Improvement of Board Level Reliability for BGA Solder Joints Using Underfill
نویسندگان
چکیده
The underfilling BGA as an alternative to direct chip attachment for high density packaging technologies have been developed. This paper discusses the thermomechanical and metallurgical effects of underfill material and the resulting improvement in board level reliability for underfilled BGA assemblies. Finite element analysis (FEA) models were developed to predict the thermal fatigue life of the solder joints during thermal cycling tests for BGA assemblies without and with underfill material. FEA predicted that the stress concentrated in the solder at the crevice between the solder ball and upper substrate was approximately 60 percent of the stress without underfill. Subsequently, the predicted fatigue life was as much as 10 times higher for the underfilled assemblies. The thermal fatigue failure of BGA solder joints was also investigated experimentally using thermal cycle testing with subsequent solder joint analysis by scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The experiments revealed that solder joint failure was caused by propagation of cracks that initiated in the solder at the upper interface between the solder ball and copper pad. The fatigue life of the underfilled assemblies was about 8 times that of the assemblies without underfill. The results showed that the underfill material can play an important role in improving board level reliability for BGA solder joints in harsh environments.
منابع مشابه
Reliability Study of High-Pin-Count Flip-Chip BGA
A family of 1.0-mm pitch full-array flip-chip BGAs were developed. These packages vary from 27 to 45 mm in package size, 15 to 25 mm in die size, and 672 to 1020 in ball count. With dies and packages so large, solder joint fatigue failure and underfill delamination, induced by thermal expansion mismatch, are a major concern. Finite element analysis was set up for efficient reliability analysis....
متن کاملReliability of Small BGAs in the Automotive Environment
In this work, the under-the-hood reliability of smaller PBGA packages has been evaluated in the automotive thermal cycling environment. Various methods of enhancing reliability have been explored including increased BT substrate thickness, the utilization of NSMD pads on the BGA component, alternative PCB plating finishes, and the use of underfill encapsulants. A set of test boards was assemble...
متن کاملModeling and Experimental Correlation of Bga Solder Joints under Pcb Bending
This study addresses the effects of varying configurations in board-level 4-point bend testing of BGA packages. The IPC/JEDEC 9702 test method employs 4-point monotonic PCB bending at high strain rates to characterize the PCB strains required to cause board level interconnection failures [1]. While this test is widely used, at present there is little published documentation of the resultant str...
متن کاملExperimental and numerical analysis of BGA lead-free solder joint reliability under board-level drop impact
Board-level solder joint reliability is very critical for handheld electronic products during drop impact. In this study, board-level drop test and finite element method (FEM) are adopted to investigate failure modes and failure mechanisms of lead-free solder joint under drop impact. In order to make all ball grid array (BGA) packages on the same test board subject to the uniform stress and str...
متن کاملBoard Level Reliability Evaluation of Low Silver (ag) Content Lead-free Solder Joints at Low Strain Rates
To improve the durability of lead free solder joints under high strain rates, such as drop and shock loading, some area array manufacturers have converted to low silver (Ag) content tin silver copper (SAC) solder spheres instead of the commonly accepted SAC305 solder. While the lower silver content SAC solder joints may address high strain rate shock loads, the durability of these joints under ...
متن کامل